
Intellectual Property
ILLINOIS STATE BAR ASSOCIATION

The newsletter of the Illinois State Bar Association’s Section on Intellectual Property Law

 VOL 61 NO. 1SEPTEMBER 2021

Google v. Oracle: U.S. Supreme Court
Whiffs on a Chance to Declare Code’s
Status
BY PHILLIP R. VAN NESS

I must confess that this has been one
of the most difficult cases to review. While
appellate decisions that leave some issues
unresolved for later are not unusual, this
one, in my opinion, is particularly notable
in a negative sense, both for the shamefully
extended process inflicted upon the litigants
to get to a conclusion and for what seems
an unnecessarily convoluted course of
reasoning that invites further litigation for
no compelling reason.

In its April 5, 2021 decision in Google
LLC v. Oracle America Inc. [18-956], the
Supreme Court overwhelmingly [6-2] sided
with Google in its long-running copyright
dispute with Oracle. The decision generally
pleased tech companies but upset the
movie and recording industries as well as
publishers and authors, not to mention
the Trump administration, which sided
with Oracle in this battle of heavyweights,
although Google is obviously the larger
of the two combatants. The monetary
stakes were impressive: Oracle had claimed
damages in the billions.

In a nutshell, the high court gave its
blessing to Google’s admitted outright
copying of over 11,000 lines of code
developed by Oracle [actually its
predecessor, Sun Microsystems] for its
Java platform for computers and tablets.
The asserted reason for using all that code

was to enable Google to use the familiar
computer programming shortcuts and
protocols employed by Java, in order to
develop Google’s Android operating system
for smart phones. The Court concluded
that such extensive copying nevertheless fell
within the doctrine of fair use.

Practitioners familiar with the fair use
doctrine might find themselves torn by this
decision. The dissenters [Clarence Thomas
and Justice Samuel Alito] seemed less torn
than outraged, but it is possible to argue
both sides without blushing; even Justice
Breyer, author of the majority decision,
noted the “thoughtful dissent” by Justice
Thomas. Clearly, where one stands affects
one’s view.

The crux of the justices’ differences lay in
the difference between what programmers
call “Implementing Code” vs. “Declaring
Code.” To understand the decision, the
reader must understand the difference
between those species of computer code.

To create the Android program, which
was released in 2007, Google wrote millions
of lines of computer code. The vast majority
of that code by volume was “Implementing
Code” and virtually all of it was brand-new,
not derived from Oracle’s Java program.
However, to make all this new code work,
Google also used about 11,500 lines of the
“Declaring Code” embedded in Oracle’s

Java platform. This was apparently a big
chunk of the “Declaring Code” component
of the Java program, though obviously a tiny
fraction of the overall Android program.

In support of his conclusion that such
naked copying was nonetheless fair use,
Justice Breyer wrote that Google “took
only what was needed” and that “Google’s
copying was transformative,” meaning a use
that “adds something new and important.”
To reach that conclusion, however, he
had to articulate how copying “Declaring
Code” cannot be lumped together with
copying “Implementing Code.” In doing
so, he employed a number of analogies. In
all candor, I found some of his analogies
ridiculous, even if his result was ultimately
sensible. My quarrel was with his analogies,
not with his logic; there were manifestly
better analogies he could have used, in
my opinion; in fact, some of his analogies
were appropriate and helpful, but Breyer’s
attempts to augment those with additional
analogies created needless confusion and
provided an opening for Justice Thomas to
pounce.

With little thanks to Breyer, the
difference between the two species of
computer code, as I understand it, is that
Declaring Code provides the background
structure and shorthand instructions
for navigating through a program, while

2

Implementing Code articulates the tasks
to be performed. At one point, Breyer used
a robot as part of an analogy to explain
how computer programs work, in which
Declaring Code [playing the part of the
robot] uses a set of shorthand predefined
commands to find a recipe [playing the role
of Implementing Code] and delivers it to
the cook [playing the role of the computer]
to prepare the dish. That was helpful if
a bit odd, but for some reason he felt it
necessary to try other sets of analogies,
including one in which he stated that
“the declaring code’s shortcut function
is similar to a gas pedal in a car that tells
the car to move faster or the QWERTY
keyboard on a typewriter that calls up a
certain letter when you press a particular
key.” As strained as the robot analogy is, the
QWERTY and gas pedal analogies are off-
the-charts worse, and unfortunately masks
the true functions of Declaring Code,
which [as Breyer elsewhere does note] are
two: to bundle commonly-used predefined
tasks into packages of instructions, and
to provide a programming structure in
which these packages of instructions are
stored and retrieved; the latter function is
better explained by Breyer by analogy to
the Dewey Decimal System by which books
are categorized. I wish only that Breyer
had stuck with the Dewey Decimal System
and maybe the robot; anyone familiar
with the QWERTY keyboard [which is
all of us], knows that pressing a key to get
a designated letter or number bears no
more resemblance to a set of computer
instructions than a box of letters from a
Scrabble game bears to an encyclopedia.

In any event, Breyer and the majority
sided with the district court judge who
had conducted a six-week jury trial, and
rebuked the federal circuit, which had
reversed the trial judge.

Notably, the original trial had addressed
the issues in this case on both patent
and copyright grounds. While the jury
rejected Oracle’s patent claims outright,
it deadlocked on the copyright claims,
specifically on the fair use defense. To
break that impasse, the trial judge held that
“Declaring Code” could not be copyrighted,
since it amounted to merely a “system or

method of operation” within the meaning
of 17 U.S.C. §102(b). For the casual reader,
here is what that section says:

“(b) In no case does copyright
protection for an original work of
authorship extend to any idea, procedure,
process, system, method of operation,
concept, principle, or discovery, regardless
of the form in which it is described,
explained, illustrated, or embodied in such
work.”

In rejecting that part of the trial judge’s
view, the federal circuit held that declaring
code was copyright-eligible, noting
that Google could have created its own
declaring code scheme and structure if it
had wanted to. Yet it also rejected Oracle’s
request that it decide Google’s fair use
defense as well, asserting that this “is not a
case in which the record contains sufficient
factual findings upon which we could
base a de novo assessment of Google’s
affirmative defense of fair use.” [750 F. 3d,
at 1372-1373]. So, it remanded the case
back to the district court for another trial
on that issue. Though Google appealed
that decision to the Supreme Court, its
petition was denied, so back to the district
court it went. Another trial, another jury,
another blow to Oracle: After three days,
the jury decided that indeed Google had
demonstrated that its copying of Oracle’s
Declaring Code was a fair use. Once again,
Oracle appealed to the federal circuit.

When the case re-appeared in front of
the federal circuit, it reversed the district
court once again. But this time, it addressed
the fair use question head-on, holding that,
even assuming all facts in Oracle’s favor,
the question of fair use is a question of law,
not fact, and then held as a matter of law
that Google’s copying of all that declaring
code was fair use.

As an aside, it is difficult for your
author to reconcile how the federal circuit
could remand an issue for a trial, allegedly
to rectify the lack of “sufficient factual
findings,” then decide the same issue as a
question of law.

Then again, it is difficult for your author
to understand why the Supreme Court
accepted the case on the second bounce
but not the first, or why the majority did

not simply answer the core question: is
Declaring Code copyrightable? Instead, it
merely stated that: “the Court assumes for
argument’s sake that the copied lines can
be copyrighted, and focuses on whether
Google’s use of those lines was a fair use.”
[Op. cit at 5]. It then labored for 19 pages
through the familiar four factors set forth
in the fair use statute at 17 U.S.C. §107,
namely:

A. The Nature of the Copyrighted Work;
B. The Purpose and Character of the

Use;
C. The Amount and Substantiality of the

Portion Used; and
D. Market Effects.
In each case, Breyer and his majority

struggled mightily to bend those factors
negatively to Oracle and in favor of fair use.
This required resort to tortured logic, as
where the majority declared the “amount
and substantiality” test in favor of fair
use despite acknowledging that those
copied lines of Declaring Code “amount
to virtually all the declaring code needed
to call up hundreds of different tasks” [Op.
cit at 32]. Similarly, it declared that the
“market effect” on Oracle was negligible,
since “Sun’s many efforts to move into
the mobile phone market had proved
unsuccessful” [Op. cit at 35]. This prompted
Justice Thomas to remind the majority that
the record showed that Google had tried
repeatedly to negotiate a license deal with
Oracle for its code, but that:

“when the companies could not agree
on terms, Google simply copied verbatim
11,500 lines of code from the library. As
a result, it erased 97.5% of the value of
Oracle’s partnership with Amazon, made
tens of billions of dollars, and established its
position as the owner of the largest mobile
operating system in the world.” [Op. cit at
44].

Apparently, the “amount and
substantiality” as well as the “market effect”
of Google’s copying were more obvious to
Google than it was to the Court.

In any event, the majority’s strained
reasoning, not to mention two rounds
of trials and appeals, could have been
avoided by simply acknowledging, as
had the trial judge, the plain import of 17

3

U.S.C. §102(b), and holding that, in this
case, the Declaring Code was no more than
a method of operation and thus ineligible
for copyright protection. This is, in effect,
what Breyer did in the guise of addressing
the “amount and substantiality” test of fair
use, when he stated that “Google copied
those lines not because of their creativity,
their beauty, or even (in a sense) because
of their purpose. It copied them because
programmers had already learned to work
with the Sun Java API’s system...” [Op. cit at
33]. To this author, this is simply another
way of saying that Java’s Declaring Code was
merely a “system” or “method of operation”;
it was thus unnecessary to decide the

non-issue of whether Google’s copying was
“transformative.”

To be clear, your author believes the
result was proper, though the means to that
end were needlessly foggy. While many
of Thomas’ criticisms of Breyer’s decision
have obvious merit, Thomas himself turns
a blind eye to 17 U.S.C. §102(b) when he
posits that “The Copyright Act expressly
protects computer code. It recognizes that
a “computer program” is protected by
copyright” [Op. cit at 47] but then only cites
to 17 U. S. C. §§109(b), 117, and 506(a).
While Thomas excoriates the majority for
failing to address the core question, his
glossing over the issue seems no better.

In the final analysis, this is the kind of
decision that gives courts [and lawyers] a bad
name. Pages of dicey legal arguments were
constructed that could and should have been
avoided. Litigants, juries and lower courts
were dragged needlessly through a process
that consumed untold hours and dollars and
was at times procedurally absurd. Future
litigation is assured, and that is a shame.n

Phillip Van Ness is of counsel to the Urbana law
firm of Webber & Thies, P.C.,
<PVanness@WebberThies.com>

